
Journal of Computational Physics156,1–11 (1999)

Article ID jcph.1999.6347, available online at http://www.idealibrary.com on

Generation of Short and Long Range Temporal
Correlated Noises

Aldo H. Romero∗,1 and Jose M. Sancho†
∗Department of Chemistry and Biochemistry 0340 and Department of Physics, University of California,

San Diego, La Jolla, California 92093-0340; and†Departament d’Estructura i Constituents de la
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We present the implementation of an algorithm to generate Gaussian random
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1. INTRODUCTION

In stochastic process simulations, the noise generation with some specific statistical
properties has been of great importance. In most cases, the required noise is Gaussian
and white (delta correlated); in many other cases, as in noises of real systems, a specific
correlation is needed and an appropriate noise generation has to be implemented which can
be carried out in standard computer facilities. Despite the extensive work in developing
algorithms to generate noises with particular correlations, there is still a lag concerning
those noises with any given temporal, spatial, or spatiotemporal correlation.

Some algorithms have been proposed in the past few years for noises which have been
proved to obey a linear Langevin equation with a linear, Gaussian, white, noise term. A
formal integration of this linear equation is enough to generate a random process with a
very particular time correlation. Examples of this approach are the so called Ornstein–
Uhlenbeck (O–U) and Wiener (W) processes. The physical meaning of the O–U process is
the velocity of a Brownian particle under the influence of friction and immersed in a heat
bath. W-process is the archetype for the dynamical behavior of change in position of a free
Brownian particle in the high friction limit. The correlations of these two processes are well
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known and can be obtained analytically [1] and numerically [2] by standard methods of
stochastic processes.

Nevertheless, quite often in numerical stochastic simulations, we are faced with processes
characterized by a Gaussian noise with a specific correlation and an unknown Langevin-
like equation dynamics. Therefore, a more general algorithm that only depends on the
knowledge of the temporal correlation is necessary [3, 4].

The purpose of this work is to present the implementation of an algorithm which allows
the simulation of Gaussian noises with almost any given temporal correlation function. The
only requirement for the algorithm to work is that the Fourier transform of the temporal
correlation function should be known [4]. In cases where the Fourier transform of the
required temporal correlation function cannot be properly defined, the algorithm can be
used with a suitable cutoff.

In Section 2, algorithms based in Langevin equations are revised and the new algorithm
of noise generation is presented in practical terms. The algorithm has the property of
simulating different correlation regimes, from short to long ranged. Section 3 considers
different applications for which the dynamics of the system are very sensitive to the noise
correlation. A summary of results and some conclusions are presented in the last section.

2. ALGORITHMS TO GENERATE GAUSSIAN NOISES

2.1. The Linear Langevin Equation Method

For the sake of comparison with the method we want to present here, let us revise briefly
the main points of the generation of a Gaussian noise which follows a linear Langevin
equation in terms of a Gaussian white noise. The stochastic discretized trajectories are
generated by formally integrating the corresponding Langevin equation and using a set of
Gaussian random numbers for a given realization. The statistical properties are calculated
from many realizations of these trajectories (“an ensemble”). In the case of Gaussian noise,
only two moments are necessary to characterize the statistical properties of the random
process. Due to the linear character of the Langevin equation the Gaussian property of the
white noise is transmitted to the generated noise.

The simplest case is the W-process, which follows the Langevin equation

η̇ = ξ(t), (1)

whereξ(t) is a Gaussian white noise of zero mean and delta correlation:

〈ξ(t)ξ(t ′)〉 = 2εδ(t − t ′). (2)

Here,ε is the noise intensity.
The statistical properties are easily evaluated [1] and a trajectory for this type of noise

can be obtained by formally integrating Eq. (1) over time,

η(t +1t) = η(t)+
∫ t+1t

t
ξ(t ′) dt′ = η(t)+ X(t), (3)

where the noisy termX(t), is constructed from

X(t) =
√

2ε1t α(t). (4)
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Here,α(t) is a set of Gaussian independent random numbers of zero mean and variance
equal to unity, obtained from any reliable Gaussian random generator [6, 7].

As a second example, we consider the O–U process. This process contains a temporal
memory and obeys the Langevin equation

η̇ = −η
τ
+ ξ(t)

τ
, (5)

whereτ is the characteristic time memory. As in the former case, a formal integration gives

η(t +1t) = η(t)e−1t
τ + ε

τ

∫ t+1t

t
e−

t−t ′
τ ξ(t ′) dt′. (6)

Studying the statistical properties of the noisy term, the algorithm reads [8]

η(t +1t) = η(t)e−1t
τ +

√
ε

τ

(
1− e−

21t
τ

)
α(t). (7)

In this way, a time stochastic trajectory is generated step by step as in the previous
example. Moreover, in the algorithm we introduce below, the whole trajectory is constructed
in a single calculation step.

2.2. Spectral Method

As we noted in the Introduction, this method starts from the knowledge of the time corre-
lation function. Probably the basis of this algorithm has been rediscovered and implemented
several times, but now, due to the actual high speed and large storage space in computers, the
algorithm can be implemented rather easily. Here we follow the main ideas of Refs. [3, 4]
and introduce some steps that simplify the calculations.

We want to generate a Gaussian, random correlated, noise,η(t), whose correlation func-
tion γ (t), is defined by

〈η(t)η(t ′)〉 = γ (|t − t ′|), (8)

and its Fourier transform,

γ (ω) =
∫

e−iωtγ (t) dt, (9)

is known (to some extent). In theω-Fourier space, this correlation reads

〈η(ω)η(ω′)〉 = 2πδ(ω + ω′)γ (ω), (10)

whereη(ω) is the Fourier transform ofη(t).
With this initial information in mind, the algorithm could be summarized as follows. First

we discretize the time inN= 2n intervals of mesh size1t and note that this time interval
has to be much smaller than any other characteristic time of the system for our method to
work. Every one of these intervals will be denoted by a Roman index in real space (time)
and by a Greek index in Fourier space (frequency).
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In the discrete Fourier space, the noise has a correlation given by

〈η(ωµ)η(ω′µ′)〉 = N1tδµ+µ′,0γ (ωµ). (11)

Now, η(ωµ) can be constructed from

η(ωµ) =
√

N1tγ (ωµ) α(ωµ),

µ = 0 · · · N, η(ω0) = η(ωN), ωµ = 2πµ
N1t , (12)

whereα(ωµ) ≡ αµ are Gaussian random numbers with zero mean and correlation,

〈αµαν〉 = δµ+ν,0. (13)

This type of delta-anticorrelated noise can be generated rather easily if the symmetry prop-
erties of real periodic series in the Fourier space (αi ) are used [9]. Thus, we avoid the extra
work involved in Fourier transforming real random numbers [4]. Consider, for example, a
system of sizeN; the Fourier components of a periodic series are then related by

αµ = αµ+pN αµ = α∗−µ, (14)

wherep is an integer number. Sinceαµ=0 is real andIm(αµ>0)= −Im(αµ<0), as can be seen
in Fig. 1, the requested anticorrelated complex random numbers (13) can be constructed as

αµ = aµ + ibµ, b0 = 0, (15)

whereaµ andbµ represent Gaussian random numbers with zero mean and a variance of
one half: 〈

a2
µ

〉 = 〈b2
µ

〉 = 1

2
, µ 6= 0, a2

0 = 1. (16)

FIG. 1. Diagram representing the construction of a discrete delta anticorrelated noise in Fourier space. Indexes
ai andbi represent Gaussian random numbers as explained in the text.
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The discrete inverse transform ofη(ωµ) is then numerically calculated by a fast Fourier
transform algorithm [6]. The result is a string ofN numbers,η(ti ), which by construction
have the proposed time correlation (8). However, due to the symmetries of the Fourier
transform, onlyN/2 of these values are actually independent and the remaining numbers
are periodically correlated with them.

In order to check the suitability of the procedure, the time correlation of Eq. (8) is
numerically evaluated by an independent (non-Fourier-based) method, namely,

γ (ti ) =
〈∑Nmax

j=0 η(t j + i1t)η(t j )

Nmax+ 1

〉
. (17)

Here,Nmax is a number smaller thanN/2 (in the examples that follow, it is taken equal to
N/4).

We now present several examples where this approach is implemented. Since the num-
ber of applications making use of temporal random noises is quite large we have chosen
applications with rather different correlation properties in order to illustrate the power of
the method. The same procedure has already been used for spatial correlated noises [5, 10,
11].

2.3. Short Range Correlated Noises

a.1. A Gaussian correlation.Let us consider a noise with a Gaussian correlation func-
tion defined as

〈η(t)η(t ′)〉 = γ (|t − t ′|) = 2ε

τ
√

2π
e−

|t−t ′ |2
2τ2 , (18)

whereε andτ are the noise intensity and correlation time, respectively. The correlation is
normalized in such a way that

ε =
∫ ∞

0
γ (t) dt. (19)

Settingτ→ 0, the white noise limit is recovered. The Fourier transform of this Gaussian
correlation (18) is given by

γ (ω) = 2εe−
τ2ω2

4 . (20)

According to the prescription (12), we now generate the discrete fieldη(ωµ) as

η(ωµ) =
(

N1t2εe
τ2

1t2
(cos(2πµ/N)−1)

)1/2
αµ. (21)

In Fig. 2, an explicit comparison between the numerical results and the expected theo-
retical prediction is presented.

a.2. The Ornstein–Uhlenbeck process.The Ornstein–Uhlenbeck process simulates the
behavior of the velocity of a Brownian particle under friction and immersed in a thermal bath.
Quite often, it is used to represent a real noise with memory, whose intensity isε and whose
correlation time (or memory intensity) isτ . This is a well-known Gaussian, Markovian, and
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FIG. 2. Temporal correlation for two short range correlated noises. (a) Gaussian correlation (18). (b) Orstein–
Uhlenbeck process (22). Common parameters:N= 217,1t = 0.01, ε= 20, τ = 10. Full lines are the simulation
data and dashed lines are the corresponding theoretically expected results.

stationary noise, which obeys a linear Langevin equation (5). Its well-known correlation is
given by

〈η(t)η(t ′)〉 = γ (|t − t ′|) = ε

τ
e−

|t−t ′ |
τ , (22)

with the same normalization used for the previous example. Since this noise obeys a linear
Langevin equation, which was not the case for the first example, a realization of this noise
could be simulated using the formal solution of the stochastic differential equation given
by Eq. (7). Instead, we present in this subsection the results obtained following our spectral
method. The Fourier transform of this particular correlation function is

γ (ω) = 2ε

1+ (τω)2 . (23)

According to the prescription (12), we generate a discrete fieldη(ωµ) as

η(ωµ) =
(

N1t2ε

1+ ( 2τ
1t sin(πµ/N)

)2

)1/2

αµ. (24)

In Fig. 2, we compare the numerical and theoretical results. The discretization of the
ω-variable using either the function cos( 2πµ

N ) as in Eq. (21) or the function sin( πµN ) as in
Eq. (24) does not make any difference.

We have seen that in the short range correlated noises considered here, the agreement
between the statistical properties of the noise generated from the spectral method and the
statistical properties required from the noise are quite good.

2.4. Long Range Correlated Noises

A more difficult noise, in the sense that it cannot be obtained from any known linear
Langevin equation, is the one characterized by a power-law decaying correlation function,

γ (|t − t ′|) ∼ ε

|t − t ′|β , 0< β < 1. (25)
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This correlation is not well defined in Fourier space (it has a singularity at|t − t ′| =0).
Therefore, in order to implement the spectral method, we start with a guess forγ (ωµ) and
then we look at the dynamics ofγ (t) in real space. The Fourier values of the noise are now
discretely generated according to the expression

η(ωµ) = [N1tε]1/2[
2
1t sin(πµ/N)+ ω0

](1−β)/2αµ, (26)

whereω0 is a predefined cut-off. In Ref. [4] modified Bessel functions are used for the
correlation in Fourier space where they have the same long range decay. In our case, we
assume the following form for the correlation function in real space,

γ (t) = Aε

πβ(t + t0)β
, 0< β < 1. (27)

wheret0 = 1t/π, β is the parameter describing the power-law decay,ε is the noise intensity,
andA is a parameter to be fitted from a correlation average.

Figure 3 presents two examples of the power-law Gaussian noise withβ = 1/3 and
β = 2/3. It can be seen that the numerical results are fitted very well by the expected power
laws.

The existence of power-law noises has been predicted and discussed for quite some time in
the literature. Many examples arise from theoretical as well as from experimental studies. A
recent reported case is the examination of the temperature fluctuations in climatological data
[12, 13], where a power law functional form is found for the correlation of these fluctuations.
In this particular case, the analysis is carried over a temperature autocorrelation function
as defined by Eq. (17), and is found that the distribution of temperature fluctuations is
well described by a Gaussian distribution with the long-ranged decaying auto-correlation
functionC(s)∼ s−γ . The exponent found for their data is around 2/3. Noises with these
properties can be generated using our procedure and can be implemented in modeling
processes similar to the one reported in this climatological analysis.

Figure 4 shows a realization of a particular noise trajectory generated with our method
for a power-law noise withβ = 2/3. The variations of the data generated with the algorithm

FIG. 3. Temporal correlation for two long range correlated noises, with correlation defined by Eq. (25).
(a)β = 1/3, ε= 20, A= 0.7095. (b)β = 2/3, ε= 20, A= 0.4483. Common parameters:N= 217,1t = 0.01. Full
lines are the simulation data and dashed lines are the corresponding theoretical fitting from Eq. (27).
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FIG. 4. Section of the time series realization for a power law correlation withβ = 2/3.

look very similar to Figs. 1.b, 6.a and 6.b in Ref. [12]. The persistence of the series is evident
from our simulation where the stochastic trajectory appears as “packets.”

3. APPLICATIONS

We proceed now to present and discuss two different nontrivial examples in nonequilib-
rium statistical physics where our algorithm can be applied: (i) the dispersion process of a
Brownian particle and (ii) the decay from an unstable state, both cases under the influence
of long range noises generated through the spectral method. In the first case the noise is
additive, whereas in the second case it appears multiplicatively.

3.1. Superdiffusive Motion

In this section we want to focus our attention on the random motion of a Brownian particle
which obeys the Langevin equation

dx

dt
= η(t), (28)

whereη is a Gaussian noise with a given correlation function. We consider three different
cases, a short range and two long range noises.

The solution for the relative dispersion is well known:

〈δx(t)2〉 = 2
∫ t

0

∫ t ′

0
γ (s) ds dt′. (29)

For large times, this expression is either∼t (diffusion) for short range noises or∼t2−β

(super-diffusion) for long range noises. The explicit form of the time dependence of this
quantity appears in Fig. 5, where we also show the variance of the three different examples in
which our algorithm is applied. Two super-diffusive cases are clearly seen, with dispersion
exponents∼1.75 and 1.25, corresponding to noise decay power laws,β = 0.25 or 0.75,
respectively. A short range noise (exponential) is also included for comparison. We see that
in this last case the behavior is ballistic (deterministic)∼t2 for t <τ , but diffusive fortÀ τ
as predicted by Eq. (29).
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FIG. 5. Dispersion as a function of time for three different realizations of the noise. The two upper curves cor-
respond to a power-law noise with two different exponents,β = 0.25 andβ = 0.75. The bottom curve corresponds
to an exponential noise withτ = 10.0. Straight lines are plotted as an eye guide.

3.2. Decay of an Unstable State

The decay of an unstable state is one of many interesting problems which appear in
nonequilibrium phenomena and nonlinear relaxation process. The switch-on process of a
dye laser has been a prototype of a nonequilibrium situation in which the influence of several
sources of noise has been tested. The dynamics of this system can discriminate the effects
of both additive or multiplicative noises [14–16]. It has been established that additive noise
is responsible for the short time dynamics but multiplicative noise effects appear in the
medium and long term dynamics. In previous studies, white or short range, colored noises
have been used, but long range noises have never been considered. Here we will present
several numerical simulation results for the decay of an unstable state under the influence
of long range multiplicative noises.

In order to simplify the analysis, let us illustrate the situation with the following Langevin
equation,

dx

dt
= ax− bx3+ xη(t), (30)

whereη is a Gaussian noise whose correlation function is to be specified. Fora and b
positive parameters, the initial valuex(0)= 0 is an unstable state which does need small
perturbation to start relaxing toward its steady state. To trigger this process we need either
the additive noise of Eq. (30) or an initial distribution forx(0). We have chosen this last
assumption and the initial values ofx(0) are Gaussian distributed with statistical moments
〈x(0)〉=0 and〈x(0)2〉= σ 2. Due to the symmetries of the problem, the mean value is
〈x(t)〉=0, and hence we look at the dynamical evolution of the second moment.

To get a precise idea of the short time behavior, it is enough to study Eq. (30) in a linear
approximation. Formal integration of this equation gives

x(t) = x(0) exp

(
at +

∫ t

0
η(t ′) dt′

)
. (31)
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Using Gaussian properties through the calculation, we obtain for the second moment

〈x2(t)〉 = σ 2 exp(2at + 4Ä(t)), (32)

whereÄ(t) is defined by

Ä(t) =
∫ t

0

∫ t ′

0
γ (s) ds dt′. (33)

For the deterministic case,ε= 0, and the multiplicative white noise case, we have

〈x2(t)〉 = σ 2 exp(2at), (34)

〈x2(t)〉 = σ 2 exp(2at + 4εt), (35)

respectively.
As in the superdiffusion case, we get for long range noises a power time dependence
∼t2−β in the exponential; we therefore expect a larger rate for the relaxation of the initial
state.

In Fig. 6 we see how the decay of the unstable initial state is influenced in the different
cases discussed. For the values of the parameters we have used, Eqs. (34) and (35) predict
that the multiplicative white noise should decay six times faster than the deterministic case.
For long range correlated noises we expect that the smaller the exponentβ is, the faster
the decay. Within statistical errors, these points are actually seen in the simulation data
presented in the figure.

It is interesting to note that for intermediate and long times no analytical results can
be obtained. However, Fig. 6 is telling us that the final steady state also depends on the
correlation of the noise, taking larger values for smallerβ ’s. This is not an easy problem
and it would need further theoretical analysis.

FIG. 6. Time evolution of the second moment for different cases. (a)β = 1/3, (b) β = 1/2, (c) β = 2/3,
(d) white noise, and (e) deterministic.a= b= ε= 0.2.



METHOD TO GENERATE GAUSSIAN CORRELATED NOISES 11

4. SUMMARY AND CONCLUSIONS

We have presented a method to generate Gaussian noises with a prescribed time cor-
relation function which does not depend on any type of dynamics. The algorithm herein
incorporates within the same framework the generation of long and short ranged noises. In
particular, the need for a good algorithm is manifest when long range noises representing
physical dynamical process with unknown or very complicated dynamical equations are
required. In this sense, this method can numerically simulate the influence of long and short
ranged noises in physical systems in a very reliable and controlled way. With the prescrip-
tion given, many problems with long range realizations can be simplified and the possibility
of some kind of analytical approach to specific problems increases (such is the case of the
examples we have presented).

The generalization of the algorithm to spaciotemporal noises is straightforward for any
number of dimensions. Since by construction, the noise generation is finite, the upper time
limit of the simulation has to be selected in advance, but it does not constitute a serious
limitation for the algorithm.
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